Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Technical Paper

An Intuitive Derivation of the Dual-Clutch Model for Clutch Shift Dynamics

2020-04-14
2020-01-0433
There are several commercial off-the-shelf software available to study transmission and driveline dynamics. Many of these software require a faithful representation of the transmission topology in order to carry out the analyses. These modeling techniques utilize several redundant degrees of freedom which may not be necessary for studying low frequency (< ~30 Hz) dynamics and may be computationally inefficient. The dual-clutch model has been proposed as a generic 2-DOF model that overcomes some of these drawbacks. In this paper, the dual-clutch model is initially derived from first principles, starting with the equations of motion for a planetary automatic transmission. The model coefficients - the inertia matrix and the matrix of clutch coefficients - are then derived using a more intuitive approach based on energy considerations.
Technical Paper

Application of Multivariate Control Chart Techniques to Identifying Nonconforming Pallets in Automotive Assembly Plants

2020-04-14
2020-01-0477
The Hotelling multivariate control chart and the sample generalized variance |S| are used to monitor the mean and dispersion of vehicle build vision data including the pallet information to identify the non-conforming pallets that are used in body shops of FCA US LLC assembly plants. An iterative procedure and the Gaussian mixture model (GMM) are used to rank the non-conforming or bad pallets in the order of severity. The Hotelling multivariate T2 test statistic along with Mason-Tracy-Young (MYT) signal decomposition method is used to identify the features that are affected by the bad pallets. These algorithms were implemented in the Advanced Pallet Analysis module of the FCA US software Body Shop Analysis Toolbox (BSAT). The identified bad pallets are visualized in a scatter plot with a different color for each of the top bad pallets. The run chart of an affected feature confirms the bad pallet by highlighting data points from the bad pallet.
Technical Paper

A Method Using FEA for the Evaluation of Tooling and Process Requirements to Meet Dimensional Objectives

2020-04-14
2020-01-0497
Dimensional Engineering concentrates effort in the early design phases to meet the dimensional build objectives in automotive production. Design optimization tools include tolerance stack up, datum optimization, datum coordination, dimensional control plans, and measurement plans. These tools are typically based on the assumption that parts are rigid and tooling dimensions are perfect. These assumptions are not necessarily true in automotive assemblies of compliant sheet metal parts on high volume assembly lines. To address this issue, Finite Element Analysis (FEA) has been increasingly used to predict the behavior of imperfect and deformable parts in non-nominal tooling. This paper demonstrates an application of this approach. The complete analysis is divided into three phases. The first phase is a nominal design gravity analysis to validate the nominal design and tooling.
Technical Paper

Adaptive Sampling in the Design Space Exploration of the Automotive Front End Cooling Flow

2020-04-14
2020-01-0149
One of the key inputs 1-D transient simulation takes is a detailed front end cooling flow map. These maps that are generated using a full vehicle Three-dimensional Computational Fluid Dynamics (3D CFD) model require expensive computational resources and time. This paper describes how an adaptive sampling of the design space allowed the reduction of computational efforts while keeping desired accuracy of the analysis. The idea of the method was to find a pattern of Design of Experiments (DOE) sampling points for 3D CFD simulations that would allow a creation of an approximation model accurate enough to predict output parameter values in the entire design space of interest. Three procedures were implemented to get the optimal sampling pattern.
Technical Paper

Experimental Study on Static and Fatigue Performance of Self-Piercing Riveted Joints and Adhesively Bonded Self-Piercing Riveted Joints Connecting Steel and Aluminum Components

2020-04-14
2020-01-0177
This paper describes an experimental study on the performance of self-piercing riveted (SPR) joints and adhesively bonded SPR joints connecting steel and aluminum components under both quasi-static and cyclic loading. The joint configurations cover a wide range of material gauges, types and grades. Two and three thickness joints, with and without adhesive are also part of this study. Load versus deflection behavior, load carrying capacity, fatigue life and the failure modes for each type of joint are discussed. This study focuses on the influence of dissimilar material and adhesives to the joint performance.
Technical Paper

Frame Structure Durability Development Methodology for Various Design Phases

2020-04-14
2020-01-0196
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements. Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Technical Paper

CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector

2020-04-14
2020-01-0327
The thorough understanding of the effects due to the fuel direct injection process in modern gasoline direct injection engines has become a mandatory task to meet the most demanding regulations in terms of pollutant emissions. Within this context, computational fluid dynamics proves to be a powerful tool to investigate how the in-cylinder spray evolution influences the mixture distribution, the soot formation and the wall impingement. In this work, the authors proposed a comprehensive methodology to simulate the air-fuel mixture formation into a gasoline direct injection engine under multiple operating conditions. At first, a suitable set of spray sub-models, implemented into an open-source code, was tested on the Engine Combustion Network Spray G injector operating into a static vessel chamber. Such configuration was chosen as it represents a typical gasoline multi-hole injector, extensively used in modern gasoline direct injection engines.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Enhanced Windshield CAE NVH Model for Interior Cabin Noise

2020-04-14
2020-01-1100
This paper describes a reliable CAE methodology to model the linear vibratory behavior of windshields. The windshield is an important component in vehicle NVH performance. It plays an integral role in interior cabin noise. The windshield acts as a large panel typically oriented near vertical at the front of vehicle’s acoustic cavity, hence modeling it accurately is essential to have a reliable prediction of cabin interior noise. The challenge to model the windshield accurately rises from the structural composition of different types of windshields. For automotive applications, windshields come in several structural compositions today. In this paper, we will discuss two types of windshield glass used primarily by automotive manufacturers. First type is the typical laminated glass with polyvinyl butyral (PVB) layer and second type is the acoustic glass with PVB and vinyl layers. Acoustic glass improves acoustic characteristics of the glass in a frequency range of ~ 1200 Hz to ~4000 Hz.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Journal Article

Simulations of Advanced Combustion Modes Using Detailed Chemistry Combined with Tabulation and Mechanism Reduction Techniques

2012-04-16
2012-01-0145
Multi-dimensional models represent today consolidated tools to simulate the combustion process in HCCI and diesel engines. Various approaches are available for this purpose, it is however widely accepted that detailed chemistry represents a fundamental prerequisite to obtain satisfactory results when the engine runs with complex injection strategies or advanced combustion modes. Yet, integrating such mechanisms generally results in prohibitive computational cost. This paper presents a comprehensive methodology for fast and efficient simulations of combustion in internal combustion engines using detailed chemistry. For this purpose, techniques to tabulate the species reaction rates and to reduce the chemical mechanisms on the fly have been coupled.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

2013-04-08
2013-01-0416
The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
X